Identification of Cryptosporidium parvum Oocysts among Hospitalized Children under-5 years in Northeastern Nigeria

Umoru M. Askir1*, T. M. Isyaka1, A. B. Samaila2, Tijjani Isa3, M. Muhammad Ibrahim3, U. T. Hadiza3, Haruna B. Ali1 and M. Usman1

1Department of Medical Laboratory Science, University of Maiduguri, Nigeria.
2Department of Biological Sciences, Abubakar Tafawa Balewa University, Nigeria.
3Department of Microbiology, University of Maiduguri, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors UMA and TMI designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors ABS, TI and MMI managed the analyses of the study. Authors UTH, HBA and MU managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJTDH/2020/v41i230255
Editor(s): (1) Dr. Nasser Mousa, Mansoura University, Egypt.
Reviewers: (1) Jairo Pinheiro, Brazil. (2) Benjamin Longo-Mbenza, Walter Sisulu University, South Africa. (3) Ochieng O. Anthony, Sumait University, Tanzania.
Complete Peer review History: http://www.sdiarticle4.com/review-history/55325

Received 01 January 2020
Accepted 06 March 2020
Published 31 March 2020

Original Research Article

ABSTRACT

Cryptosporidium parvum is among the major pathogens causing diarrheal diseases in children. It is of major public health significance due to its low infectious dose and its oocysts are highly resistant to chlorination, common household disinfectants and survive long periods in the environment. This study was designed to evaluate the occurrence of Cryptosporidium parvum oocysts in stool of hospitalized children under-5 years. One hundred and fifty (150) stool samples were collected from one hundred and fifty children (Male:Female = 1:1.08, Mean Age±S.D=22.08 months ± 21.02) and were processed using the modified Ziehl-Nelson method for identification of protozoan oocysts. Out of the one hundred and fifty (150) stool samples analyzed, 16 tested positive to oocysts of C. parvum, which gives a parasite prevalence rate of 10.7%. This was observed to be higher among male patients (52.0%) and children between the age 32-41 months (31.3%). Parasite

*Corresponding author: Email: mohammedaskirau@gmail.com;
prevailing in relation to age of patients was statistically not significant ($X^2=0.105$, DF=1, P-value = 0.74591, p<0.05). Other intestinal protozoan parasites identified include *Entamoeba histolytica* (1.33%) and *Giardia lamblia* (2.60%).

Keywords: Cryptosporidium; Maiduguri; distribution; oocysts.

1. **INTRODUCTION**

In developing countries, Cryptosporidium is responsible for 8–19% of cases of diarrheal disease, causing a wide range of infections in vertebrate host including humans [1]. This parasite is mainly transmitted by the fecal-oral route [2]. Water, food and direct contact are sources of infection [3]. *Cryptosporidium* attacks the intestinal cell and respiratory system of vertebrate hosts [4], where it can cause a self-limited diarrheal disease. But in compromised patients, it can produce a chronic and persistent diarrhea. Cryptosporidiosis has a worldwide distribution and in most surveys is among the four major pathogens causing diarrheal diseases in children. It has major public health implications because infections can result from exposure to low doses of oocysts. The oocysts are highly resistant to chlorination, common household disinfectants and survive long periods in the environment [5]. In some countries, community outbreaks have been reported to be associated with the consumption of polluted water [4]. Five species of *Cryptosporidium* including *C. hominis* (previously known as *C. parvum*, human genotype), *C. parvum* (bovine genotype), *C. meleagris*, *C. canis*, and *C. felis* have been found to be responsible for most human infections [6].

Cryptosporidium spp is a waterborne, obligate intracellular protozoan parasite that infects epithelial cells lining the small intestines of human and over 170 different host species causing enteric diseases [7]. There are more than ten species of *Cryptosporidium*. *C. parvum* and *C. hominis* are the two species responsible for the most cases of human cryptosporidiosis worldwide [8]. The genus *Cryptosporidium* was named at the beginning of the last century but was only recognized as a potential cause of the disease in 1995, when it was found to be associated with diarrheic turkey. Although Cryptosporidium was subsequently found in a broad range of farm animals, its impact was neglected until the early 1980s when it was found to be a common, serious primary cause of outbreaks of diarrhea in calves [9]. The fact that *Cryptosporidium* was found to infect humans and could cause a life-threatening disease in immuno-deficient people, especially AIDS patients, as well as the association of *Cryptosporidium* with waterborne-related human outbreaks of diarrhea has certainly given the parasite a more widespread recognition [10]. In this regard, this study seeks to examine the prevalence of *Cryptosporidium parvum* among hospitalized children under-5years. It aim to evaluate the relationship between patient demographic variables and rate of *C. parvum* infection.

2. **MATERIALS AND METHODS**

2.1 **Study Design**

This is a cross-sectional hospital-based study that tries to estimate the incidence rate of *C. parvum* infection among patients under-5years attending Mamman Shuwa Memorial Hospital, Maiduguri, in northeastern Nigeria.

2.2 **Study Area**

The study was conducted in Mamman Shuwa Memorial Hospital Maiduguri, the capital of Borno State. The city is located in the North-Eastern part of Nigeria which lies within latitude 11.15°N and longitude 30.05°E in the sudano-sahelian savannah zone with a dense population that are mostly fishemen, crop farmers, traders and herdsmen. Based on the national census conducted in 2006, Borno State has a population of 4 151 193.

2.3 **Study Population**

The target population for the study include in-patients and out-patients attending the Mamman Shuwa Memorial Hospital Maiduguri, 200 bed facility serving a population of over 4 million in the North-Eastern sub-region of Nigeria, comprising six States (Borno, Bauchi, Yobe, Adamawa, Taraba and Gombe) as well as a sizeable number across the borders of Cameroon, Chad and Niger Republic.

Sample collection and processing: Stool samples were randomly collected from 150 patients between the ages of 0-5years old, in a
universal container and transported to the Laboratory for analysis.

Macroscopic examination: The samples were examined macroscopically to detect the presence of any color, consistency (whether formed, semi-formed, soft, or watery), presence of blood, mucus, and adult worms.

Formal ether concentration method: One gram of fecal specimen was emulsified in 7ml of 10% formal saline contained in a screw-capped bottle. The mixture was then sieved and the filtrate transferred into centrifuge tube thereafter 3 mls of ether was added and placed in a centrifuge machine and set at low speed of 3000 rpm for about one minute.

Four (4) different layers of ether dissolved fat, fecal debris, Formal saline and sediment containing the parasites formed in the tube in ascending order. Using a Pasteur pipette, the entire layers of fluid below the fecal debris, ether and formal saline was removed and discarded; the sediment containing the oocyst was used to prepare the microscopic slides [11].

Modified Ziehl-Neelsen method: A smear from the sediment obtained by the formal ether concentration technique was made on a clean grease free slide and air-dried and fixed with methanol for 3 minutes. The smear was stained with unheated carbol fuchsin for 15 minutes and then washed off with water. It was then decolorized with 1% acid alcohol for 12 seconds and counterstained with 0.5% malachite green for 2 minutes, washed off with distilled water and the slide was kept in a draining rack to dry [11].

Microscopic examination of the slides: The prepared slides were examined microscopically for oocysts, using a low power magnification to detect the presence of the oocysts and the oil immersion objective to identify the oocysts that appeared small, round to oval, pink red stained bodies measuring 4-6 um, or a single deeply stained red dot were considered positive [11].

2.4 Data Analysis

Data were grouped as percentages and frequencies, and presented in tabular form. Data were analyzed using Chi-square test at 95% confidence interval and 5% error margin.

3. RESULTS

Out of the one hundred and fifty (150) stool samples analyzed, Sixteen (16) tested positive to *Cryptosporidium parvum*, which gives a prevalence rate of 10.7%. Rate of infection was higher among male patients (6.0%) than female patients (4.7%) (Table 1).

A chi-square test of independence was performed to examine the relation between gender and the rate of infection with *C. parvum*. The relation between these variables was found to be not significant, $X^2 (df =1, N=150) = 0.1296, p = 0.718836$. None of the genders were more likely to be infected than the other.

Table 1. Occurrence of Cryptosporidium parvum according to sex of children under 5years attending Mamman Shuwa Memorial Hospital Maiduguri

<table>
<thead>
<tr>
<th>Sex</th>
<th>Number examined</th>
<th>Number infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>78 (52.0%)</td>
<td>9 (6.0%)</td>
</tr>
<tr>
<td>Female</td>
<td>72 (48.0%)</td>
<td>7 (4.7%)</td>
</tr>
<tr>
<td>Total</td>
<td>150 (100%)</td>
<td>16 (10.7%)</td>
</tr>
</tbody>
</table>

Table 2 shows the distribution of *Cryptosporidium parvum* infection in relation to age of patients where it was observed that children between the ages of 32-41 months recorded the highest rate of 3.33% followed by those between 22-31 months (18.7%).

Table 2. Distribution of Cryptosporidium parvum according to Age of children under 5years attending Mamman Shuwa Memorial Hospital Maiduguri

<table>
<thead>
<tr>
<th>Age(months)</th>
<th>Number examined</th>
<th>Number infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-11</td>
<td>13</td>
<td>2 (1.33%)</td>
</tr>
<tr>
<td>12-21</td>
<td>31</td>
<td>2 (1.33%)</td>
</tr>
<tr>
<td>22-31</td>
<td>37</td>
<td>3 (2.0%)</td>
</tr>
<tr>
<td>32-41</td>
<td>32</td>
<td>5 (3.33%)</td>
</tr>
<tr>
<td>42-51</td>
<td>21</td>
<td>2 (1.33%)</td>
</tr>
<tr>
<td>52-61</td>
<td>16</td>
<td>2 (1.33%)</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>16 (10.7%)</td>
</tr>
</tbody>
</table>

Other parasites identified in this study include *Entamoeba histolytica* (1.33%) and *Giardia lamblia* (2.60%) (Table 3).

4. DISCUSSION

Cryptosporidium parvum is one of the coccidian parasites that lead to diarrheal disease particularly in countries where there is poor standards of hygiene. With such societal problems, infection can become persistent. In this study, *Cryptosporidium parvum* were
5. CONCLUSION

The study concludes that the total incidence rate of *C. parvum* among children under-5 years attending Mamman Shuwa Hospital was 10.7%. The incidence rate was higher among male patients and those between 31-41 months of age. Other intestinal parasites detected include *E. histolytica* and *G. lamblia*. However, their incidence rate is quite low.

CONSENT AND ETHICAL APPROVAL

Clearance was obtained from ethical committee of the hospital before collection of samples.

Ethical clearance was obtained from the management of the Mamman Shuwa Memorial Hospital and the consent of patients was obtained before sample and data collection.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

12. Balla HJ, Askira MM. Cryptosporidium specie as a causative agent of diarrhoea in university of Maiduguri Teaching Hospital, Borno Medical Journal. 2009; 6(2).

